Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: A trans-China based case study

Ze-Mei Zheng a, b, Gui-Rui Yu a,* , Yu-Ling Fu a, Yue-Si Wang c, Xiao-Min Sun a, Ying-Hong Wang c

a Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11A Datun Road, Chaoyang District, Beijing 100101, China
b Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
c Institute of Atmosphere Physics, Chinese Academy of Sciences, Beijing 100029, China

Article info

Understanding the spatial variation of temperature sensitivity (i.e. Q10) of soil respiration (R s) and its controlling factors, is critical to improve the precision of carbon budget estimations at regional scales. In this study, data from 2–3 continuous years of R s measurements over 15 ecosystems of ChinaFLUX were summarized to analyze the response of R s to soil temperature. Moreover, we improved our dataset by collecting previously published Q10 values from 34 ecosystems in China. The ecosystems studied were located in the main climatic zones of China, spanning from alpine via temperate to tropical. Spatial variations of Q10 and its controlling factors were analyzed. The results showed that soil temperature at a 5 cm depth satisfactorily explained the seasonal variations in R s of the 15 ChinaFLUX ecosystems (R 2 varying from 0.37 to 0.83). Based on the overall data, the Q10 values of R s in China ranged from 1.28 to 4.75. The spatial variations in Q10 were primarily determined by soil temperature during measurement periods, soil organic carbon (SOC) content, and ecosystem type. Ecosystems in colder regions and with higher SOC content had relatively higher Q10 values. Moreover, ecosystems of different vegetation types showed different Q10 values. A temperature- and SOC-dependent function for Q10 is suggested, which could be a valuable reference for improving the regional-scale models of R s and ecosystem carbon cycles.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Soil respiration (R s), after gross primary productivity, is the second largest carbon flux between terrestrial ecosystems and the atmosphere. As a key factor influencing soil carbon reserves and soil CO 2 flux, the temperature sensitivity of R s has been given considerable attention in the research of the global carbon cycle (Xu and Qi, 2001b; Lenton and Huntingford, 2003; Fierer et al., 2006). However, disagreements among researchers remain, especially regarding whether or not long-term warming will induce acceleration of soil organic carbon (SOC) decomposition and whether root respiration or heterotrophic respiration is more sensitive to long-term temperature changes (Giardina and Ryan, 2000; Knorr et al., 2005; Reichstein et al., 2005a; Davidson and Janssens, 2006; Hartley et al., 2007).

The temperature sensitivity of R s (i.e. the Q10 value), which refers to the factor by which soil CO 2 efflux increases with an increase in temperature of 10°C, is an important ecological parameter in ecosystem carbon cycle models (Reichstein et al., 2005b). Previously, Q10 was commonly treated as a constant in many ecosystem models, for instance, as a constant of 2 in CASA and TEM (Potter et al., 1993; Raich et al., 1991) and as a constant of 2 or 2.5 in the BIOME-BGC model (Running and Hunt, 1993). Many field experiments, however, show that Q10 values vary spatially (Xu and Qi, 2001b; Lenton and Huntingford, 2003), compelling more recent modellers to treat the temperature response of R s differently (Xu and Qi, 2001b; Reichstein et al., 2002, 2003). Several studies suggest that a small deviation of the Q10 value in carbon cycle models may result in significant bias in the estimation of R s (Townsend et al., 1997; Xu and Qi, 2001b). Chen and Tian (2005), for example, found that soil heterotrophic respiration of boreal biome was underestimated by 71% in a model using a constant of 2 as compared to respiration data obtained by a temperature-dependent Q10 model.

To improve the precision of carbon budget estimation at a regional scale, therefore, studying both Q10 values across different ecosystems as well as the spatial variations of Q10 and its controlling factors is critical. In China, scattered R s measurements have
been made for the last 10 years (Wu et al., 1997; Liu et al., 1998), and the number of measurements has increased continuously in recent years (Lou et al., 2004; Cao et al., 2004). By contrast, quantifying the spatial variations of Q_{10} across different ecosystems as well as the response of Q_{10} to environmental factors remains difficult due to differences in measurement methods. The objectives of this study were to examine the temperature response of R_s in 15 terrestrial ecosystems in China by using 2–3 years of R_s data continuously measured at 10 sites of ChinaFLUX (Chinese Terrestrial Ecosystem Flux Research Network) and to analyze the spatial patterns of Q_{10} and quantify the effects of temperature and SOC content on Q_{10} by improving our dataset through previously published Q_{10} data of other terrestrial ecosystems in China. Finally, Q_{10} values in China were compared with those in Europe and North America.

2. Materials and methods

2.1. Study sites

R_s was measured at 10 sites of ChinaFLUX, including five forest sites (Changbaishan, Qianyanzhou, Dinghushan, Heshan, Xishuangbanna), one grassland site (Haibei), and four cropland sites (Sanjiang, Yucheng, Yanting, Fukang) (Sites 1–10 in Fig. 1). Furthermore, R_s data measured for at least one growing season at 13 other sites in China, including seven forest sites, two grassland sites, and two cropland sites (Sites 11–23 in Fig. 1), were collected from previously published literature. These sites were located in the main climatic zones of China, spanning from alpine via temperate to tropical. Table 1 presents site specific information, including ecosystem types, climates, soil characteristics, and measurement periods for R_s.

2.2. Measurements of R_s

At the 10 ChinaFLUX sites (15 ecosystems), R_s was measured twice per week (at intervals of two or three days) during the growing season and once per week during the dormancy season by the static chamber/gas chromatography method (Wang and Wang, 2003). In each ecosystem, 4–6 replicate collars of 50×50 cm2 were randomly inserted to the soil with distance of about 1 m. The CO$_2$ effluxes were measured between 9:00 and 11:00 am (China Standard Time, CST) by fitting the chambers of $50 \times 50 \times 50$ cm3 gas tightly to the collars for 30 min. The four gas samples were taken by 100 ml plastic syringes with intervals of 0, 10, 20 and 30 min after closing the chambers. Air samples were analyzed using 4890D gas chromatography (Agilent Technologies, Palo Alto, CA, USA). R_s rates were determined by changes in measured CO$_2$ concentration with time. While air samples were being collected, air temperatures inside and outside the chambers and soil temperatures at depths of 0 cm and 5 cm were recorded. Detailed information of R_s measurement and data processing are described in Wang and Wang (2003).

The R_s data from the literature survey were measured using either the same method applied at the ChinaFLUX sites or using the dynamic chamber/IRGA method. We only selected R_s data measured with one of these two methods: (1) because these two methods are the most popular methods for R_s measurements in China; and (2) to ensure comparability of Q_{10} values from different measurement methods. (Kou et al. (2007) found the measurement difference was small ($\sim 10\%$) between the static chamber method and the dynamic chamber method with the CO$_2$ concentration measured by the LI-6400 system.) We also found that the difference in measured R_s between these two methods was less than 11\% (unpublished observations), with good comparability of Q_{10} values.

2.3. Data analysis

We used the van’t Hoff equation (Eq. (1); Lloyd and Taylor, 1994) to analyze the response of R_s to temperature at ChinaFLUX sites,

$$R_s = R_0 e^{BT}$$ \hspace{1cm} (1)

where R_s is the soil respiration rate (\mu mol m$^{-2}$ s$^{-1}$), T is the soil temperature at a 5 cm depth (°C), and R_0 is the soil respiration rate at a reference temperature of 0°C (\mu mol m$^{-2}$ s$^{-1}$).
Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>MAT (°C)</th>
<th>MAP (mm)</th>
<th>2003.1–2005.9</th>
<th>Ecosystem type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Changbaishan</td>
<td>42.40</td>
<td>128.10</td>
<td>2.8</td>
<td>750</td>
<td>Temperate mixed forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 15.5 35 24 41 9.4 0.55 2.94</td>
</tr>
<tr>
<td>2</td>
<td>Qianyanzhou</td>
<td>26.73</td>
<td>115.07</td>
<td>7.9</td>
<td>1524</td>
<td>Subtropical planted needle-leaf forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 20 2.6 36 39 25 18.8 0.38 1.99</td>
</tr>
<tr>
<td>3</td>
<td>Dinghushan</td>
<td>23.13</td>
<td>112.59</td>
<td>20.9</td>
<td>1564</td>
<td>Subtropical evergreen broadleaved forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 400 8.8 43 28 29 21.5 0.78 1.73</td>
</tr>
<tr>
<td>4</td>
<td>Heshan</td>
<td>22.67</td>
<td>112.92</td>
<td>21.7</td>
<td>1800</td>
<td>Subtropical planted needle-leaf forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 50 5.6 43 28 29 21.3 0.54 1.52</td>
</tr>
<tr>
<td>5</td>
<td>Xishuangbanna</td>
<td>21.93</td>
<td>101.27</td>
<td>21.4</td>
<td>1557</td>
<td>Seasonal tropical rain forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 200 4.0 29 52 19 19.4 0.45 2.32</td>
</tr>
<tr>
<td>6</td>
<td>Haibei</td>
<td>37.61</td>
<td>101.31</td>
<td>1.7</td>
<td>580</td>
<td>Alpine meadow</td>
<td>SOC content(0–20 cm, kg m⁻²) 10.3 20 53 27 7.8 0.72 2.75</td>
</tr>
<tr>
<td>7</td>
<td>Sanjiang</td>
<td>47.35</td>
<td>133.31</td>
<td>1.9</td>
<td>600</td>
<td>Temperate soybean cropland</td>
<td>SOC content(0–20 cm, kg m⁻²) 5.4 20 44 36 15.9 0.27 2.10</td>
</tr>
<tr>
<td>8</td>
<td>Yucheng</td>
<td>36.93</td>
<td>114.60</td>
<td>13.1</td>
<td>610</td>
<td>Temperate winter wheat–summer maize rotation cropland</td>
<td>SOC content(0–20 cm, kg m⁻²) 2.0 16 56 28 19.9 0.54 2.03</td>
</tr>
<tr>
<td>9</td>
<td>Yanting</td>
<td>30.97</td>
<td>105.20</td>
<td>17.3</td>
<td>836</td>
<td>Temperate wheat–paddy rotation cropland</td>
<td>SOC content(0–20 cm, kg m⁻²) 1.9 22 51 27 12.2 0.59 1.97</td>
</tr>
<tr>
<td>10</td>
<td>Fukang</td>
<td>44.50</td>
<td>87.75</td>
<td>6.6</td>
<td>164</td>
<td>Temperate cotton cropland</td>
<td>SOC content(0–20 cm, kg m⁻²) 1.2 4 93 3 18.0 4.37</td>
</tr>
<tr>
<td>11</td>
<td>Maershan</td>
<td>45.40</td>
<td>127.67</td>
<td>2.7</td>
<td>700</td>
<td>Subtropical evergreen needle-leaf forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 56 9.0 19 54 27 12.0 0.31 1.93</td>
</tr>
<tr>
<td>12</td>
<td>Qingyuan</td>
<td>41.85</td>
<td>124.91</td>
<td>4.7</td>
<td>775</td>
<td>Temperate deciduous needle-leaf forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 56 9.0 19 54 27 12.0 0.31 1.93</td>
</tr>
<tr>
<td>13</td>
<td>Baotianman</td>
<td>33.47</td>
<td>111.93</td>
<td>15.1</td>
<td>900</td>
<td>Temperate deciduous needle-leaf forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 56 9.0 19 54 27 12.0 0.31 1.93</td>
</tr>
<tr>
<td>14</td>
<td>Miyaluo</td>
<td>30.46</td>
<td>103.02</td>
<td>9</td>
<td>850</td>
<td>Temperate deciduous needle-leaf forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 56 9.0 19 54 27 12.0 0.31 1.93</td>
</tr>
<tr>
<td>15</td>
<td>Dagangshan</td>
<td>27.50</td>
<td>114.50</td>
<td>16.8</td>
<td>1591</td>
<td>Temperate deciduous needle-leaf forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 56 9.0 19 54 27 12.0 0.31 1.93</td>
</tr>
<tr>
<td>16</td>
<td>Jianou</td>
<td>27.02</td>
<td>118.12</td>
<td>18.7</td>
<td>1664</td>
<td>Temperate deciduous needle-leaf forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 56 9.0 19 54 27 12.0 0.31 1.93</td>
</tr>
<tr>
<td>17</td>
<td>Huitong</td>
<td>26.80</td>
<td>109.50</td>
<td>16.5</td>
<td>1300</td>
<td>Temperate deciduous needle-leaf forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 56 9.0 19 54 27 12.0 0.31 1.93</td>
</tr>
<tr>
<td>18</td>
<td>Xilinghe</td>
<td>44.00</td>
<td>116.10</td>
<td>1.4</td>
<td>500</td>
<td>Temperate deciduous needle-leaf forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 56 9.0 19 54 27 12.0 0.31 1.93</td>
</tr>
<tr>
<td>19</td>
<td>Xilinghe</td>
<td>43.55</td>
<td>116.82</td>
<td>1.5</td>
<td>300</td>
<td>Temperate deciduous needle-leaf forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 56 9.0 19 54 27 12.0 0.31 1.93</td>
</tr>
<tr>
<td>20</td>
<td>Bange</td>
<td>31.23</td>
<td>90.01</td>
<td>1.2</td>
<td>380</td>
<td>Temperate deciduous needle-leaf forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 56 9.0 19 54 27 12.0 0.31 1.93</td>
</tr>
<tr>
<td>21</td>
<td>Damxung</td>
<td>30.85</td>
<td>91.08</td>
<td>1.3</td>
<td>477</td>
<td>Temperate deciduous needle-leaf forest</td>
<td>SOC content(0–20 cm, kg m⁻²) 56 9.0 19 54 27 12.0 0.31 1.93</td>
</tr>
</tbody>
</table>

(continued on next page)
According to the definition of Q_{10}, the Q_{10} value for Eq. (1) was calculated as:

$$Q_{10} = \frac{R_{T+10}}{R_T} = e^{10B} \tag{2}$$

where R_T and R_{T+10} are R_s rates at temperature T and $T+10$, respectively. The Q_{10} value is independent of temperature in Eq. (2).

Considering the dramatic difference in soil water status during paddy and dry farming periods in rotation cropland ecosystems, only R_s data measured during dry farming period were selected for analysis at the Yanting site (i.e. R_s data during periods of wheat and rape growing for wheat-paddy rotation cropland and rape-paddy rotation cropland, respectively).

For the Q_{10} values of terrestrial ecosystems in China collected from published literature only the datasets that satisfied the following requirements were used: (1) the Q_{10} value was derived from measurements lasting for at least one growing season; (2) the Q_{10} value was derived from Eqs. (1) and (2); (3) the temperature index was soil temperature at a depth of 5 ± 5 cm; and (4) the determination coefficient (R^2) between R_s and soil temperature was higher than 0.50. If the Q_{10} value was not directly given in the literature, we calculated the Q_{10} value using Eq. (2) with the given parameters of Eq. (1). Thus, we obtained 34 Q_{10} values from 23 sites (Table 1).

To compare Q_{10} values in China with other regions, Q_{10} values were collected from published literature for forest ecosystems in Europe and North America using the same data collection requirements as used for China.

An exponential equation (Eq. (3)) was used to analyze the relationship between temperature and Q_{10}.

$$Q_{10} = a e^{-kT_{ave}} \tag{3}$$

where T_{ave} is the average soil temperature at a depth of 5 ± 5 cm during the measurement periods, k is the constant indicating how fast Q_{10} is changing with temperature, and a is the Q_{10} value when T_{ave} is 0°C.

All statistical analyses were performed by SPSS 13.0 (SPSS for Windows, Version 13.0, Chicago, IL, USA), and significant differences for all statistical tests were evaluated at the level of $\alpha = 0.05$.

3. Results

3.1. The response of R_s to temperature

The relationship between R_s and soil temperature at a depth of 5 cm for 15 different ecosystems in China could be described satisfactorily using the van’t Hoff equation (Fig. 2), and from 37% to 83% of seasonal variations in R_s could be explained by soil temperature (Table 2). The correlations between R_s and soil temperature were lower for artificial ecosystems (i.e. cropland) than natural ecosystems (i.e. forest and grassland).

The temperature sensitivity of R_s varied among different ecosystem types (Table 2). The Q_{10} value in the Changbaishan temperate forest was highest among the six forest ecosystems, but still within the range (2.0–6.3) reported for temperate forest ecosystems (Davidson et al., 1998). Among the three subtropical forests with similar temperature condition (i.e. Qianyazhou, Dinghushan, and Heshan), the Q_{10} value of Dinghushan evergreen broadleaved forest (about 400 years old) was lower than those of both the Qianyazhou and Heshan planted forest ecosystems (about 20 years old). The Q_{10} values at two alpine grassland ecosystems (i.e. alpine meadow and alpine shrub at Haibei) were near to or higher than the average Q_{10} value of temperate and tropical grassland ecosystems on global scales (2.1, Wang and Fang, 2000).
2007) and higher than those of temperate grassland ecosystems in China (1.60–1.81, Liu et al., 2007). The fluctuation of Q_{10} in cropland ecosystems was small (1.67–2.14), and Q_{10} varied with the change in crop systems at the same site.

3.2. The spatial variations of Q_{10} values in China

Synthesizing ChinaFLUX data and collected data, the results showed that the frequency distribution of Q_{10} values in China was partial normal, with skewness and kurtosis at 1.45 and 2.61, respectively (Fig. 3a). Q_{10} values of diverse terrestrial ecosystems in China changed from 1.28 to 4.75 ($n = 49$), within the range of previously reported values (1–8) (Lenton and Huntingford, 2003).

The average Q_{10} values showed an order of forest (2.51 ± 0.78) > grassland (2.15 ± 0.44) > cropland (1.99 ± 0.24) ecosystems, with significant difference among these three ecosystem types ($P < 0.05$). The Q_{10} of deciduous forest was significantly higher than that of evergreen forest ($P < 0.05$), and the Q_{10} of evergreen needle-leaf forest was significantly higher than that of evergreen broadleafed forest ($P < 0.05$) (Fig. 3b). The average Q_{10} values of alpine, temperate, warm temperature, subtropical, and tropical ecosystems were 2.69, 2.66, 2.22, 1.94, and 2.31, respectively (Fig. 3c), and generally the colder the climate, the higher the Q_{10} value.

3.3. The controlling factors and functions of the spatial variations in Q_{10}

This study suggested that Q_{10} in cold regions was higher than that in warm regions (Fig. 3c), which was consistent with the earlier studies (Tjoelker et al., 2001; Chen and Tian, 2005). The result of exponential regression between Q_{10} and temperature (Eq. (3)) showed that soil temperature at a depth of 5 ± 5 cm during the measurement periods explained 27% of the spatial variation of Q_{10} in China (Fig. 4), and a 1°C increase in average soil temperature would lead to a 3.3% decrease in Q_{10} in China.
The labile pool of SOC provides important substrate for microbial respiration. Therefore, the change of SOC content, especially in the topsoil, affects soil microbial activities (Atkin et al., 2000), causing the temperature response of R_t to vary among soils with different SOC contents. There was a strong positive correlation between Q_{10} and SOC content at a depth of 20 cm, accounting for 44% of the spatial variation of Q_{10} ($P < 0.001$) (Fig. 5a). The outlying data of SOC content at the Miyaluo site (36.9 kg m$^{-2}$), however, exhibited a high weighing on the regression analysis (Fig. 5a), which may have influenced the analysis result. After further analysis that excluded data from the Miyaluo site, the correlation coefficient between Q_{10} and SOC content remained significantly ($R^2 = 0.26$, $P < 0.001$, Fig. 5b). Moreover, setting T_{ave} (i.e. the average soil temperature at a depth of 5 ± 5 cm during the measurement periods, Eq. (3)) as a controlling factor, the partial correlation analysis showed that the partial correlation between SOC content and Q_{10} remained significantly (correlation coefficient 0.37, $P < 0.05$). This result further indicates the direct influence of SOC content on Q_{10}.

The above results (Figs. 2–4) suggested that the spatial variations in Q_{10} of R_t in China were primarily determined by soil temperature during the measurement periods, SOC content, and ecosystem type. In this study, by analyzing the relationship between Q_{10} and the average soil temperature during the measurement periods (T_{ave}) and SOC content (0–20 cm), two statistical functions were obtained:

$$Q_{10} = 3.67e^{-0.033T_{\text{ave}}}, R^2 = 0.27, P < 0.001$$

$$Q_{10} = 0.09 \text{SOC} + 1.79, R^2 = 0.26, P < 0.001$$

A multi-variable function was also obtained by further regression analysis:

$$Q_{10} = 0.56e^{-0.018T_{\text{ave}}(0.13 \text{SOC} + 4.77)}, R^2 = 0.32, P < 0.001$$

These functions therefore represent the best estimates of the attendant parameters with currently available data. Although they are not completely precise, they are arguably appropriately representative, and are valuable for application in the modification of regional-scale models of R_t in China.

3.4. Comparison of Q_{10} between China and other regions

Taking forest ecosystems as an example, the linear regressions were performed between latitude, mean annual air temperature, SOC content at a depth of 100 cm and Q_{10} values in China, as well as in other regions (Europe and North America; Fig. 6). Then, the significance test of difference in curve slopes of regression functions was made.
The spatial variations of Q_{10} in other regions were also affected by temperature and SOC content to a certain degree (Fig. 6b,c). Within a similar latitudinal range, mean annual air temperature, and SOC content, the differences among the curve slopes for Q_{10} with the above three factors between China and other regions were not significant (significance test of difference in curve slopes: $P = 0.46, 0.054, \text{and } 0.58$).

Fig. 4. The relationship between Q_{10} and average soil temperature at a 5 ± 5 cm depth during measurement periods (T_{ave} °C).

Fig. 5. The relationship between Q_{10} and SOC content (0–20 cm, kg m$^{-2}$). Data of Miyaluo alpine forest (Site 14 in Table 1) was excluded in Fig. 5b.

Fig. 6. The relationship between Q_{10} (●: China; ○: Europe; △: North America) and (a) latitude, (b) mean annual air temperature and (c) SOC content (0–100 cm, kg m$^{-2}$). SOC content data of China was derived from Data-sharing Network of Earth System Science (http://www.geodata.cn). SOC content data of non-China regions was derived from IGBP-DIS (ftp://www.daac.ornl.gov/data/global_soil/IGBP-SurfaceProducts/data/soilcarb.dat). The bold line in each plot presents the best fit for data from China, and the thin line presents the best fit for data from other regions. Q_{10} values of non-China regions were derived from: Buchmann (2000) ($Q_{10} = 2.41, 3.22, 2.87, 2.39$); Granier et al. (2000) ($Q_{10} = 1.72$); Janssens and Pilegaard (2003) ($Q_{10} = 4.21$); Epron et al. (2004) ($Q_{10} = 3.35$); Davidson et al. (1998) ($Q_{10} = 3.9$); Xu and Qi (2001a) ($Q_{10} = 1.72$); Southern et al. (2002) ($Q_{10} = 2.86$); Samuelson et al. (2004) ($Q_{10} = 1.43, 1.81, 1.83, 1.91$); Falk et al. (2005) ($Q_{10} = 2.93$); Happer et al. (2005) ($Q_{10} = 2.22$); Khomik et al. (2006) ($Q_{10} = 5.6$, averaged in this study); McCulley et al. (2007) ($Q_{10} = 1.78$).
4. Discussion

4.1. The influences of prevailing climatic conditions on Q_{10}

Previous studies have suggested a negative correlation between Q_{10} and temperature during measurement periods (Tjoelker et al., 2001; Chen and Tian, 2005; Kirschbaum, 2006). Our study also found a 1°C increase in average soil temperature during measurement periods would lead to a 3.3% decrease in Q_{10} in China (Fig. 4), which is lower than the value of 8% at global scale (Chen and Tian, 2005). Furthermore, the Q_{10} value was higher for the temperate forest ecosystem than subtropical and tropical forest ecosystems (Table 2). The major reason for the strong effect of temperature on Q_{10} is the varying dependence of R_5 processes (i.e. the decomposition of soil carbon matter by soil microbial activities and root respiration with root growth) on temperature across ecosystems within different climatic zones. The low temperature condition is the major limiting factor for root growth and soil microbial activities of ecosystems in cold regions, such as the Changbai mountain temperate forest and the Haibei alpine grassland. The soil microbial activities and root growth in cold ecosystems are low under the long-term cold environment and the soil CO_2 flux is low. Furthermore, soil warming, especially during the short summer, can enhance the soil microbial activities and root growth sharply, which leads to an active decomposition of soil carbon matter and the enhancement of plant-derived CO_2 release from root respiration, and results in a quick increase in the soil CO_2 efflux rate. However, the temperature condition is usually conducive for root growth and soil microbial activities in tropical and subtropical ecosystems, temperature limitations on biologic activities being low in such ecosystems.

Moreover, a strong dependence of Q_{10} on soil moisture has been quantified in many studies (Xu and Qi, 2001b; Reichstein et al., 2002; Janssens and Pilegaard, 2003; Gaumont-Guay et al., 2006). As a whole, the interpretations of the influence of soil moisture on Q_{10} are complicated. Reichstein et al. (2002) speculates that the reduction of Q_{10} with increasing drought severity could be due to a switch in the carbon pool being respired; however, recent study has found that the Q_{10} value of forest ecosystems in China was significantly and negatively correlated with mean annual precipitation (Peng et al., 2009), indicating the temperature sensitivity of R_5 declined when the soil moisture saturated, leading to limited oxygen diffusion (Wang et al., 2006). Moreover, a controlled-environment laboratory experiment on undisturbed organic and mineral soil cores found the Q_{10} was stable and decreased only slightly when the soil dried (Reichstein et al., 2005b), which implies the moisture effects on temperature sensitivity R_5 are confounded. Although we did not find significant correlation between mean annual precipitation and Q_{10} based on our studied data, and did not take soil moisture into account considering that most ecosystems in this study were in relatively humid regions, precipitation or soil moisture should be considered as important environmental factors in further R_5 measurements, especially in with respect to arid regions.

4.2. The influence of SOC content on Q_{10}

Our study concluded that ecosystems with higher SOC content had higher Q_{10} values (Fig. 5). This conclusion was partially because the labile pool of SOC is an important substrate for R_5. Ecosystems with higher SOC content generally have greater potential for soil CO_2 efflux. Thus, with other environmental factors are fixed, the increase rate of R_5 in ecosystems with higher SOC content tends to be higher than that with lower SOC content. Moreover, several experiments suggest that SOC characteristics (e.g. SOC quantity/quality) could affect the temperature sensitivity of soil organic matter composition (Fierer et al., 2005; Knorr et al., 2005). The composition of microbial community and quantity/quality of SOC are linked such that the temperature response of soil organic matter decomposition decreases with a decrease in SOC content (Zogg et al., 1997; Atkin et al., 2000; Fierer et al., 2005; Knorr et al., 2005), indicating that the acclimation of R_5 to warming may also induce the lower temperature sensitivity of R_5 with lower SOC content (Luo et al., 2001).

4.3. The influence of ecosystem types on Q_{10}

The result indicating that the Q_{10} of deciduous forest was significantly higher than that of evergreen forest and that the Q_{10} of evergreen needle-leaf forest was significantly higher than that of evergreen broadleaved forest (Fig. 3b) suggests that ecosystem type also influences the spatial variation of Q_{10}. One reason is the different phenological patterns of belowground biologic activities within different ecosystems. In general, plant phenological variabilities of deciduous forests in cold regions are more obvious than those of evergreen forests in warm regions, with the increasing range of root activity of deciduous forests in spring being more significant than in evergreen forests. Therefore, R_5 of deciduous forests transfer from heterotrophic-dominated activity to heterotrophic- and autotrophic-dominated activities (Griffis et al., 2004). The abrupt change of the R_5 component in deciduous forests resulted in higher Q_{10} than in evergreen forests on an annual scale (Table 2, Fig. 3). Curiel Yuste et al. (2004) also found that Q_{10} in deciduous forests was significantly higher than that in needle-leaf forests with similar climate and soil conditions in a mixed forest in Belgium due to the more seasonal variations of plant activity and phenology in deciduous forests than in evergreen forests.

Another reason for the influence of ecosystem type on Q_{10} is possibly attributed to the varying microbial communities and SOC component among different ecosystem types (Zhou et al., 2002), which would affect the response of R_5 to temperature. A SOC mineralization experiment on the Dinghushan ecosystem (Ouyang et al., 2007) suggests that when the early and mid-succession forests are replaced by the advanced-succession forests, the SOC content and stable carbon reserves in later forests increase as a way of accumulating more stable carbon into the soil. If the stable carbon is really less sensitive to temperature than labile carbon (Giardina and Ryan, 2000; Thornley and Cannell, 2001), this could be a further explanation for the lower Q_{10} in evergreen broadleaved forests than in evergreen needle-leaf forests. Moreover, lower correlations between soil temperature and R_5 of artificial ecosystems (i.e. cropland) than natural ecosystems (i.e. grassland and forest) may partly be ascribed to the two ecosystem types are under different soil managements. In this study, the cropland ecosystems were tilled annually, mixing organic matter with the soil and causing transitional changes in soil porosity or moisture, which could cause extra variability in R_5, partly hampering the effect of temperature in contrast to the soil under grassland and forest ecosystems.

5. Conclusions

This study identified the environmental influences on temperature sensitivity (Q_{10}) of soil respiration (R_5) across major terrestrial ecosystems in China. Ecosystems in colder regions and with higher SOC content had relatively higher Q_{10} values and ecosystems of different types showed different Q_{10} values. The spatial variations in Q_{10} are primarily determined by soil temperature during measurement periods, SOC content, and ecosystem type across China. The negative correlation between Q_{10} and temperature resulted from the varying dependence of R_5 processes on
temperatures across ecosystems within different climatic zones. The dependence of Q_{10} on SOC content indicated the labile organic carbon pool as substrate for microbial respiration and the acclimatisation of R_{t} to warming. Ecosystem type also influenced the spatial variation of Q_{10} partly due to different phenological patterns of biologic activities belowground and partly due to different microbial communities and SOC components among different ecosystem types. And partly due to ecosystems of artificial and natural types under different soil managements, the correlation between soil temperature and R_{t} of cropland ecosystems was lower than forest and grassland ecosystems. A temperature- and SOC-dependent function for Q_{10} is suggested for the improvement of R_{t} and ecosystem carbon cycle modelling in China. The spatial variation of Q_{10} implies that regional-scale R_{t} derived from carbon cycle models with fixed Q_{10} value should be used with due caution. It also implies that further studies on the spatial pattern of Q_{10} and its controlling factors, as well as the function for describing such spatial pattern, are required in order to improve the precision of carbon budget estimations on regional scales.

Acknowledgements

This study was jointly funded by National Natural Natural Science Foundation of China (Grant No. 30590381), Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-432), International Partnership Project “Human Activities and Ecosystem Changes”, Chinese Academy of Sciences (Grant No. CXTD-Z2005-1), and National Natural Science Foundation of China (Grant No. 30700110, Grant No. 30801051). The authors thank all related staff of ChinaFLUX for their contribution to field work and data processing. We also thank the anonymous reviewers for presenting valuable suggestions to improve this paper.

References

